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With the goal of decreasing the stress concentration along the hole boundary in an ortho-
tropic plate under inequi-biaxial loadings, an optimum design of the fiber angle and hole
orientation is presented. The maximum absolute tangential stress along the hole boundary
is taken as the objective function, and the fiber orientation angle and the hole orientation
angle are considered as design variables. The conformal transformation method of a complex
function and the Differential Evolution (DE) algorithm are used. Two non-circular shapes,
ellipse and hexagon are taken as examples to analyze the problem. Based on the results, we
can conclude that the major axis of elliptical holes should be designed in the direction of the
maximum external loading for a perforated structure in an orthotropic plate. However, the
principal direction that has the larger Young’s modulus should be inclined to the direction
of the minimum loading, especially for a significantly orthotropic plate.
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1. Introduction

Natural materials, such as wood and rock, and composite materials, such as fiberboard, epoxy
resin bonded fiber and fiber reinforced polymer, all display anisotropic properties. Specifically,
orthotropic plates with different holes have found widespread applications in various fields such
as aerospace, marine, automobile and mechanics because of high specific stiffness and specific
strength as well as the designability of the properties (Jain, 2009; Romeo, 2001; Li and Zheng,
2007). The stress concentration along the boundary of the hole becomes an important research
problem for this structure (Toubal et al., 2005; Sharma, 2011; Engels et al., 2001). Generally,
tangential stresses at different points along the hole boundary in orthotropic plates are different
and, usually, it is the maximum value that depends the stability on the plate (Savin, 1961).
Thus, it is important to decrease the tangential stress concentration along the hole boundary in
the design of orthotropic plates.
Some researchers have studied the shape optimization of holes in isotropic plates based on

different optimization criteria or methods. Bjorkman and Richards (1976, 1979) proposed the
concept of a harmonic hole and obtained the optimal shape of the hole under different loads.
Taking the minimum integration of the square of tangential stress as the objective, Dhir (1981)
solved a series of shape optimization problems by the complex variables function, the same
method as Bjorkman. Aiming at minimizing the maximum value of the tangential stress along
the hole boundary, Lu et al. (2014a,b) obtained the optimum shape of the support section of a
tunnel at great depths using the complex variables function method. The hole-shape optimization
problem has also been solved using the Evolutionary Structural Optimization (ESO) procedure
(Ren et al., 2005) and the Simulated Annealing (SA) procedure (Sobótka et al., 2013).
So far, the existing studies have mainly focused on the shape optimization of hole in isotropic

plates to decrease stress concentration. For many practical applications, however, the shape
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of the hole is always determined by some specific demands. Hence, the optimization results
sometimes cannot meet the actual requirement. Furthermore, many plates in actual applications
are orthotropic. For orthotropic plates, however, the determination of stress distribution is more
complex than that for isotropic plates. Lekhnitskii (1968, 1981) used the complex function
method, developed by Muskhelishvili (1963), to determine the stress in an anisotropic plate,
and gave an accurate solution of stress around an elliptic hole under in-plane loading at infinity.
Some researchers have obtained analytical solutions for other non-elliptic holes (Romeo, 2001;
Rao et al., 2010; Daoust and Hoa, 1991; Ukadgaonker and Kakhandki, 2005; Rezaeepazhand
and Jafari, 2008). Lu et al. (2015) found an accurate analytic solution of stress for plates with
an arbitrarily shaped hole using the power-series method.
It can be seen from the stress analysis of an orthotropic plate that the stress distribution

along the hole boundary mainly depends on the fiber orientation angle and the hole orientation
angle for certain loadings and hole shapes. Therefore, how to decide the two angles of an or-
thotropic plate in minimization of the stress concentration is important. Sharma et al. (2014)
researched the optimization of fiber orientation angle for single lamina of composite materials
(graphite/epoxy and glass/epoxy) with circular and elliptical holes; however, the hole orienta-
tion angle was not taken into consideration. In this paper, not only the fiber orientation angle
but also the hole orientation angle are taken into consideration, and other more complicated
shapes of holes are considered, in which the maximum absolute value of the tangential stress
reaches its minimum value.
Herein, the Differential Evolution (DE) algorithm (Storn and Price, 1997) is used, and the

following assumptions are made: the orthotropic plate is infinite and elastic under the in-plane
loading at infinity (see Fig. 1); the problem can be treated as a plane stress problem.

2. Fundamental theories

Although the optimization of fiber orientation angle and hole orientation of an orthotropic plate
is an inverse problem, the process of obtaining the optimal results requires solving a series of
forward problems. In every optimization process, the solution for the tangential stress along the
hole boundary should be based on the material properties, external loads, shapes and orientation
angles of the hole. In this paper, the conformal transformation method of the complex function
is adopted to first map the outer regions of the hole in the physical plane to the outer regions of
the unit circle in the image plane. Then, the analytical solution of stress along the hole boundary
can be obtained using the power-series method.

2.1. Transformation of the mapping function under different coordinates

Figure 1 illustrates an orthotropic plate with an arbitrarily shaped hole under an in-plane
loading. xoy is the global Cartesian coordinate system, where x and y are along the directions
of σ∞x and σ

∞

y , respectively. x1oy1 and x
′oy′ are two local Cartesian coordinates. x1 is the

symmetric axis of the hole, and the angle α between the positive direction of the x-axis and
x1-axis denotes the hole orientation. x

′ and y′ are along the principal direction of the elastic
materials, and the angle ϕ denotes the fiber orientation. The outer region of the hole in the local
coordinates x1oy1 (z-plane) is mapped to the outer region of the unit circle (ζ-plane) using the
following mapping function

z∗ = x1 + iy1 = R1
(
ζ +

n∑

k=1

Ckζ
−k
)

(2.1)

where i =
√
−1, and R1 is a real constant and Ck are complex constants denoting the size and

shape of the hole, respectively. ζ = ρeiθ (θ is the polar angle in the ζ-plane, ρ = 1 on the hole
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boundary). When n is large enough, Eq. (2.1) can describe a variety of shapes of the hole. The
mapping function in the global coordinates should be obtained using the following method due
to the change of the hole orientation angle.

Fig. 1. Orthotropic plate with an arbitrarily shaped hole under an in-plane loading

As shown in Fig. 1, the local coordinates x1oy1 overlap the global coordinates xoy after
rotating α degrees clockwise. The vector z (z = x+iy) with a length of r in the coordinates xoy
makes an angle β with the x-axis.
In the global coordinates xoy

z = reiβ (2.2)

In the local coordinates x1oy1

z∗ = re
i(β−α) (2.3)

Then, Eq. (2.4) can be obtained because Eqs. (2.2) and (2.3) share the same vector z

z∗ = re
i(β−α) = e−iαreiβ = e−iαz (2.4)

Then

z = ω(ζ) = eiαz∗ = e
iαR1
(
ζ +

n∑

k=1

Ckζ
−k
)
= R
(
ζ +

n∑

k=1

Ckζ
−k
)

(2.5)

It can be seen that the mapping function in the coordinates xoy can be easily determined by
Eq. (2.5) as long as the corresponding mapping function in the coordinates x1oy1 is given even
if the hole orientation angle α changes. Changing the real constant R1 in Eq. (2.1) to a complex
constant R (R = R1e

iα) is what we need to do.

2.2. The affine transformation and mapping

The three complex variables involved in solving the anisotropic plane problems are z, z1
and z2, and the affine mathematical relationships between the three complex variables are

z1 = x+ µ1y = γ1z + δ1z

z2 = x+ µ2y = γ2z + δ2z
(2.6)
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where γ1 = (1 − iµ1)/2, γ2 = (1 − iµ2)/2, δ1 = (1 + iµ1)/2, δ2 = (1 + iµ2)/2, µ1 = α1 + iβ1,
µ2 = α2 + iβ2, αk and βk (k = 1, 2) are real constants related to the material properties.

If three polar coordinates are introduced, and by transforming the outer regions of the hole
in the z-, z1-, and z2-planes into the outer regions of the unit circle in the ζ-, ζ1-, and ζ2-planes,
respectively, the three mapping functions which satisfy Eqs. (2.6) can then be obtained. The
three mapping functions are expressed by z = ω(ζ), z1 = ω1(ζ1) and z2 = ω2(ζ2), respectively
(Lu et al., 2015)

z1 = ω1(ζ1) = γ1R
(
ζ1 +

n∑

k=1

Ckζ
−k
1

)
+ δ1R

( 1
ζ1
+
n∑

k=1

Ckζ
k
1

)

z2 = ω2(ζ2) = γ2R
(
ζ2 +

n∑

k=1

Ckζ
−k
2

)
+ δ2R

( 1
ζ2
+
n∑

k=1

Ckζ
k
2

) (2.7)

where ζ1 = ρ1e
iθ1 and ζ2 = ρ2e

iθ2 . The angles θ1 and θ2 are the polar angles in the ζ1- and
ζ2-planes, respectively. ρ1 = ρ2 = 1 on the hole boundary.

Assuming that ζ1 = ζ2 = ζ = σ = e
iθ along the unit circle, the relationships between ζ, ζ1

and ζ2 can also be established

γ1R
(
ζ1 +

n∑

k=1

Ckζ
−k
1

)
+ δ1R

( 1
ζ1
+
n∑

k=1

Ckζ
k
1

)
= γ1R

(
ζ +

n∑

k=1

Ckζ
−k
)
+ δ1R

(
ζ +

n∑

k=1

Ckζ
−k
)

γ2R
(
ζ2 +

n∑

k=1

Ckζ
−k
2

)
+ δ2R

( 1
ζ2
+
n∑

k=1

Ckζ
k
2

)
= γ2R

(
ζ +

n∑

k=1

Ckζ
−k
)
+ δ2R

(
ζ +

n∑

k=1

Ckζ
−k
)

(2.8)

Equations (2.8) are suitable for any point in the region |ζ|  1. Given a point ζ, then points
ζ1 and ζ2 can be determined by Eqs. (2.8). z, z1, and z2 can be calculated by Eqs. (2.5) and
(2.7), respectively.

2.3. Calculation of the analytical solution of stress

For the plane stress problem of an orthotropic plane, when the body forces are not taken into
consideration, the compatibility equation for Airy’s stress function F = F (x′, y′) in the local
coordinates x′oy′ can be given as (Lekhnitskii, 1968, 1981)

a′22
∂4F

∂x′4
− 2a′26

∂4F

∂x′3∂y′
+ (2a′12 + a

′

66)
∂4F

∂x′2∂y′2
− 2a′16

∂4F

∂x′∂y′3
+ a′11

∂4F

∂y′4
= 0 (2.9)

where a′ij are constants related to the material properties. The solution to Eq. (2.9) is related
to the roots of the following characteristic equation

a′11µ
′4 − 2a′16µ′

3
+ (2a′12 + a

′

66)µ
′2 − 2a′26µ′ + a′22 = 0 (2.10)

The four conjugate complex roots in Eq. (2.10) are µ′1, µ
′
1, µ
′

2 and µ
′
2, which can be calculated

by the principal elastic constants. However, the complex roots in the global coordinates xoy
should be calculated due to the change of the fiber orientation. When the local coordinates x′oy′

overlap the global coordinates xoy after rotating ϕ degrees counter clockwise, µ1 and µ2 in the
global coordinates can be given as (Lekhnitskii, 1968)

µ1 =
µ′1 cosϕ− sinϕ
cosϕ+ µ′1 sinϕ

µ2 =
µ′2 cosϕ− sinϕ
cosϕ+ µ′2 sinϕ

(2.11)
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In this paper, only the situation of µ1 6= µ2 is discussed. The solution to Eq. (2.9) can be
expressed by the two analytical functions F1(z1) and F2(z2) as

F = 2Re[F1(z1) + F2(z2)] (2.12)

where z1 and z2 are exactly the same as given in the previous Sections.
Let Φ1(z1) = dF1(z1)/dz1 and Φ2(z2) = dF2(z2)/dz2, respectively. The stress boundary

conditions on the edge of the hole expressed by Φ1(z1) and Φ2(z2) can be given as

2Re[Φ1(z1) + Φ2(z2)] = f1

2Re[µ1Φ1(z1) + µ2Φ2(z2)] = f2
(2.13)

where z1 and z2 are two points on the boundary.
The problem discussed here is an infinite field with holes, and no loads exist along the edge

of the hole. Therefore, f1 = f2 = 0, and Φ1(z1) and Φ2(z2) can be given in the following form

Φ1(z1) = B
∗z1 + Φ

0
1(z1) Φ2(z2) = (B

′∗ + iC ′
∗
)z2 + Φ

0
2(z2) (2.14)

where B∗, B′∗, and C ′∗ can be determined according to the stress components acting at infinity
(i.e., σ∞x , σ

∞

y and τ
∞

xy) as

B∗ =
σ∞x + (α

2
2 + β

2
2)σ
∞

y + 2α2τ
∞

xy

2[(α2 − α1)2 + (β22 − β21)]

B′
∗
=
(α21 − β21 − 2α1α2)σ∞y − σ∞x − 2α2τ∞xy

2[(α2 − α1)2 + (β22 − β21)]

C ′
∗
=
(α1 − α2)σ∞x + [α2(α21 − β21)− α1(α22 − β22)]σ∞y + [(α21 − β21)− (α22 − β22)]τ∞xy

2β2[(α2 − α1)2 + (β22 − β21)]

Here, Φ01(z1) and Φ
0
2(z2) in Eqs. (2.14) should have the following form after substituting

z1 = ω1(ζ1) and z2 = ω2(ζ2) into them

Φ01(z1) = Φ
0
1[ω1(ζ1)] =

∞∑

k=0

akζ
−k
1 Φ02(z2) = Φ

0
2[ω2(ζ2)] =

∞∑

k=0

bkζ
−k
2 (2.15)

where ak = a1k + ia2k, bk = b1k + ib2k, a1k, a2k, b1k and b2k are undetermined real constants
(k = 0, . . . ,∞).
Along the edge of the hole, ζ1 = σ = e

iθ and ζ2 = σ = e
iθ. The undetermined coefficients

ak and bk can be determined from Eqs. (2.13)-(2.15) by using the power-series method. Then,
the stress components σx, σy and τxy in the Cartesian coordinates can be determined by the
following equations (Lu et al., 2015)

σx = 2Re[µ
2
1Φ
′

1(z1) + µ
2
2Φ
′

2(z2)] σy = 2Re[Φ
′

1(z1) + Φ
′

2(z2)]

τxy = −2Re[µ1Φ′1(z1) + µ2Φ′2(z2)]
(2.16)

where

Φ′1(z1) = B
∗ −

n∑

k=1

kakζ
−k−1
1

/[

γ1R
(
1−

n∑

k=1

kCkζ
−k−1
1

)
+ δ1R

(
− 1
ζ21
+
n∑

k=1

kCkζ
k−1
1

)]

Φ′2(z2) = B
′∗+ iC ′

∗−
n∑

k=1

kbkζ
−k−1
2

/[

γ2R
(
1−

n∑

k=1

kCkζ
−k−1
2

)
+ δ2R

(
− 1
ζ22
+
n∑

k=1

kCkζ
k−1
2

)]

(2.17)
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The stress components σρ, σθ and τρθ in orthogonal curvilinear coordinates can be determined
by the following equations

σρ + σθ = σx + σy σθ − σρ + 2iτρθ =
ζ2

ρ2
ω′(ζ)

ω′(ζ)
(σy − σx + 2iτxy) (2.18)

Along the hole boundary where ζ1 = ζ2 = ζ = σ = e
iθ and ρ = 1, the analytical solution

of stress can be solved easily by Eqs. (2.16)-(2.18). In this way, when the mapping functions
are known and the material parameters and external loads are given, no matter how the fiber
orientation angle and hole orientation angle change, the analytical solution of the stress along
and near the hole boundary can be calculated. In addition, this analytical solution of the stress
is suitable for an arbitrarily shaped hole.

2.4. Optimization

Tangential stress concentration along the boundary of the hole will cause damage if its
magnitude exceeds the material strength. Consequently, the optimization criterion we take is
that the absolute maximum value of the tangential stress along the hole boundary should be
kept at the minimum. In the optimization, the fiber orientation angle ϕ and the hole orientation
angle α are the unknown variables. A set of the initial values of ϕ and α are given; then, the
tangential stress with the maximum absolute value max |σθ| could be obtained through the
complex variable method. By revising the values of design variables ϕ and α, the final values
of ϕ̂ and α̂ that lead to the minimal value of max |σθ| should be the optimized results. The
mathematical model could be expressed as follows

F (X) = max
θ∈[0,2π]

|σθ|

minF (X) X ∈ D = {ϕ,α}
s.t. 0 ¬ ϕ ¬ 2π 0 ¬ α ¬ 2π

(2.19)

The original DE algorithm (Storn and Price, 1997) is used in the computations. It can be
written as DE/rand/1/bin. As defined by Storn and Price, the DE algorithm is characterized
by three main parameters NP , F and CR as

xi,G i = 1, 2, . . . , NP

vi,G+1 = xr1,G + F (xr2,G − xr3,G)

uji,G+1 =

{
vji,G+1 if (randb(j) ¬ CR) ∨ j = rnbr(i)

xji,G if (randb(j) > CR) ∧ j 6= rnbr(i)
j = 1, 2, . . . ,D

(2.20)

In this paper, the number of population vectors NP equals 200. The real and constant factor
F equals 0.8, and the crossover constant CR is equal to 0.5.

3. Examples

As shown in Fig. 1, the external loads are chosen as σ∞x : σ
∞

y = 2 : 7 and τ
∞

xy = 0. Sign
convention is defined as positive for tension and negative for compression. It can be seen from
the results of the following examples that all of the maximum tangential stresses are tensile
stresses. The values of the independent principal elastic constants in the local coordinates x′oy′

are: E1 = 1.4 · 105 Pa, υ12 = 0.46 and G12 = 1.2 · 104 Pa, where the subscripts 1 and 2 represent
the directions along the x′- and y′-axis, respectively. To analyze the effect of Young’s modulus
on the optimization results, we take different values of E2/E1, i.e., 0.2, 0.5, 2.0 and 5.0. The
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material coefficients in Eq. (2.9) can be obtained by the three elastic constants as a′11 = 1/E1,
a′22 = 1/E2, a

′

16 = a
′

26 = 0, a
′

12 = −υ12/E1, and a′66 = 1/G12 (Lekhnitskii, 1968; Chen, 1994).
The hexagonal hole and the elliptical hole are selected as examples. The size of the hole has

no influence on the calculation of the stress field, because the domain occupied by the plate is
infinite. In order not to lose the generality, take R1 = 1.0. The mapping function of Eq. (2.5)
can be described as

z = ω(ζ) = 1.0eiα
(
ζ +

n∑

k=1

Ckζ
−k
)

(3.1)

The imaginary part of the coefficient Ck is equal to zero, because the hole shapes of the examples
are all symmetric about the x1-axis.

For the elliptical hole: a/b = 1.5, n = 1, C1 = (a− b)/(a + b) = 0.2.
For the hexagonal hole: n = 29, C5 = 0.0667, C11 = 0.0101, C17 = 0.0036, C23 = 0.0018 and

C29 = 0.0010 (Savin, 1961). The other Ck are all equal to zero.

3.1. Optimization of the fiber orientation angle ϕ

In this Section, only the fiber orientation angle ϕ is taken as the design variable, while the
external loads and hole orientation angle α are given. The hole orientation angle α shown in
Fig. 1 is set to 0◦ (see Fig. 2), meaning that the coordinates x1oy1 coincide with xoy. The local
coordinates x′oy′ still follow the fiber orientation, coinciding with xoy after rotation by ϕ degrees
counterclockwise. The scope of the optimized variable is ϕ ∈ 0◦-90◦ because of the symmetry of
the external loads and the hole shape.

Fig. 2. The location of holes with two coordinates: (a) elliptical hole, (b) hexagonal hole

3.1.1. Elliptical hole

The optimal fiber orientation and its corresponding tangential stress along the boundary of
the elliptical hole are illustrated in Figs. 3 and 4, respectively. The optimized fiber orientation
angles and the maximum tangential stresses are listed in Table 1. The global coordinates xoy
in Fig. 3 are in accordance with that in Fig. 2a, and the oblique lines in Fig. 3 represent the
fiber directions in the x′-axis (Fig. 2a) for different values of E2/E1. It should be noted that the
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Fig. 3. The optimal fiber orientation of the orthotropic plate with the elliptical hole

Fig. 4. Tangential stresses along the boundary of the elliptical hole at the optimal fiber orientation

Table 1. The optimal fiber orientation angles and the max |σθ| of an orthotropic plate with the
elliptical hole

E2/E1
0.2 0.5 2.0 5.0

ϕ [◦] 30.46 39.89 49.96 56.49

max |σθ| [MPa] 21.84 23.34 28.50 32.04

angle θ in Fig. 4 is the polar angle in the ζ-plane and θ = 0◦ corresponds to the intersection of
the positive x-axis and the excavation boundary.

It can be seen from Figs. 3 and 4 and Table 1 that both the optimal fiber orientation angle ϕ
and the maximum tangential stress increase with the increasing value of E2/E1. The maximum
tangential stress concentration is evident in approximately 30◦, 150◦, 210◦ and 330◦, not similar
to the isotropic plate, where the maximum tangential stress usually occurs at 0◦ and 180◦. Under
the given loading condition, the compressive stress can be found around the intersection of the
y-axis and the hole boundary with a smaller magnitude than the tensile stress.

Considering that there is only one variable in this case, the optimal fiber orientation angle ϕ
can be obtained without any optimization algorithm. Figure 5 illustrates the maximum absolute
tangential stress max |σθ| for different fiber orientation angles, showing that the minimum value
of max |σθ| and the corresponding fiber orientation angles are identical with the results listed in
Table 1, which verifies the results obtained by the DE algorithm.

For an elliptical hole, the stresses have also been analyzed by Ukadgaonker and Rao (2000).
To verify the fundamental theories of Section 2, we compared the normalized stresses of σx,
σy and τxy along the hole boundary with the results obtained by Ukadgaonker and Rao (2000,
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Fig. 5. The max |σθ | for different fiber orientation angles

Table 2. Normalized stresses of σx, σy and τxy for equi-biaxial tension on a graphite/epoxy
plate, 60◦ fibers containing an elliptical hole (a/b = 2)

θ [deg]
Ukadgaonker and Rao (2000) Zhang et al.
σx σy τxy σx σy τxy

0 0 3.44 0 0 3.4393 0

20 0.82 1.54 −1.12 0.8172 1.5421 −1.1226
40 1.46 0.52 −0.87 1.4589 0.518 −0.8693
60 1.54 0.13 −0.45 1.5423 0.1285 −0.4452
80 1.41 0.01 −0.12 1.4076 0.0109 −0.1241
90 1.3 0 0 1.3033 0 0

100 1.18 0.01 0.1 1.1812 0.0092 0.1041

120 0.89 0.07 0.26 0.8867 0.0739 0.256

140 0.57 0.2 0.34 0.5651 0.2007 0.3367

160 1.23 2.32 1.69 1.2272 2.316 1.6859

180 0 3.44 0 0 3.4393 0

page 348, Table 3) in Table 2. Taking the same values of material parameters and external
loadings, Table 2 shows that the results obtained by the two papers are in a very close agreement.

3.1.2. Hexagonal hole

The optimized fiber orientation angles and their corresponding tangential stresses along the
boundary of the hexagonal hole are illustrated in Figs. 6 and 7, respectively. The maximum
tangential stress occurs at the points marked with an asterisk. When the ratios of the elastic
moduli are E2/E1 = 0.2, 0.5, 2.0 and 5.0, the corresponding optimal fiber orientation angles
are ϕ = 32.15◦, 40.47◦, 42.74◦ and 57.90◦, respectively (shown in Fig. 6), which shows a great
difference for the different ratios of E2/E1. Figure 7 illustrates that the tangential stress reaches
the corresponding extreme values in/near the corner points. The maximum tangential stresses
for different E2/E1 are found in different positions but are still around the corner points, and
the values of the maximum tangential stress range from 42.89MPa (E2/E1 = 0.5) to 70.77MPa
(E2/E1 = 5.0), meaning that the location and magnitude of the maximum tangential stress
are highly dependent on Young’s modulus for a given hole shape and loading condition. We
can also see that the tangential stresses along the boundary are mainly tensile stresses with
the exception of the two sides BC and EF, which are parallel to the direction of the minimum
loading. Moreover, the magnitude of the compressive stress is much smaller than that of the
tensile stress.
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Comparing with the results in Fig. 4, the stress concentration along the boundary of the
hexagonal hole is much larger than that along the boundary of the elliptical hole because there
are sharp corners on the hexagonal hole.

Fig. 6. The optimal fiber orientation of the orthotropic plate with the hexagonal hole

Fig. 7. Tangential stresses along the boundary of the hexagonal hole at the optimal fiber orientation

3.2. Optimization of the fiber and hole orientation angles

Considering that the hole orientation angle also influences the tangential stress along the
boundary of the hole, both the fiber orientation angle and the hole orientation angle are chosen
as the design variables in this Section with the external loads given (refer Fig. 1).
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3.2.1. Elliptical hole

Because of the symmetry of the external loads and the elliptical hole, the scopes of optimized
variables are given as α ∈ 0◦-180◦ and ϕ ∈ 0◦-90◦. The optimal fiber and hole orientation angles
and the corresponding tangential stress along the boundary of the hole are illustrated in Figs. 8
and 9, and Table 3, respectively.

Fig. 8. The optimal fiber and hole orientation angles of the orthotropic plate with the elliptical hole

Fig. 9. Tangential stresses along the boundary of the elliptical hole at the optimal fiber and hole
orientation

Table 3. The optimal fiber and hole orientation and the max |σθ| of the orthotropic plate with
the elliptical hole

E2/E1
0.2 0.5 2.0 5.0

ϕ [◦] 33.64 39.25 53.98 66.13

α [◦] 90.95 89.29 92.43 94.84

max |σθ| [MPa] 12.85 14.33 18.12 20.11

It can be seen from Fig. 8 and Table 3 that the optimal fiber orientation angle increases
greatly with an increase in the ratio of E1/E2. Nevertheless, the hole orientation angles are all
near the same degree of 90◦, that is to say, the major axis of the elliptical hole should be set in
the direction of the maximum external load. It can also be verified by comparing Figs. 4 and 9.
Under the given loadings, vertical elliptical holes (Fig. 9) always produce smaller tangential
stress concentration compared to the horizontal ones (Fig. 4). In addition, the similar laws of
the two cases are that the maximum tangential stress increases with the ratio of E2/E1 and
compressive stress is found in Fig. 9 as well.
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3.2.2. Hexagonal hole

Because a hexagonal hole has more symmetry axes, the scopes of the optimized variables are
reduced to α ∈ 0◦-60◦ and ϕ ∈ 0◦-90◦. Figures 10-13 show the optimal placements of the fiber
and hole orientation angles and the corresponding tangential stress along the hole boundary. It
should be noted that the angle θ = 0◦ corresponds to the intersection of the positive x1-axis and
the hole in this case.

Fig. 10. The optimal placement of fiber and hole orientation angles of orthotropic plates and the
tangential stresses along the boundary of the hexagonal hole when E2/E1 = 0.2

Fig. 11. The optimal placement of fiber and hole orientation angles of orthotropic plates and the
tangential stresses along the boundary of the hexagonal hole when E2/E1 = 0.5

Fig. 12. The optimal placement of fiber and hole orientation angles of orthotropic plates and the
tangential stresses along the boundary of the hexagonal hole when E2/E1 = 2.0

It can be seen from Figs. 10-13 that both the optimized fiber orientation angle and the hole
orientation angle are apparently different for different ratios of E2/E1. Under the given inequi-
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Fig. 13. The optimal placement of fiber and hole orientation angles of orthotropic plates and the
tangential stresses along the boundary of the hexagonal hole when E2/E1 = 5.0

-biaxial tensile loading, compressive tangential stress may occur and is more likely to be found
in the sides that are parallel (BC and EF in Figs. 6 and 7), or inclined (BC and EF in Figs. 11,
AB and DE in Figs. 12 and 13) to the direction of the minimum external loading.

Combining with the above example on the hexagonal hole (see Section 3.1.2), we find that for
holes with sharp corners, the tangential stress concentration is more likely to occur around the
corner points but not always exactly in the corner points. The point D in Fig. 11 gives the most
obvious evidence. In addition, the tangential stress concentration is smaller when both the fiber
and hole orientation angles are optimized compared to the case in Section 3.1. Thus, when we
design a perforated structure in an orthotropic plate, the two parameters should be considered
jointly to decrease the tangential stress concentration along the boundary of the hole. From all
of the examples given in Sections 3.1 and 3.2, we obtain that for a significantly orthotropic plate
(E2/E1 = 0.2 or 5.0) with a central hole, setting the principal direction that has the larger
Young’s modulus inclined to the direction of the minimum loading may decrease the tangential
stress concentration along the hole boundary.

3.2.3. Optimality verification of fiber and hole orientation angles

The optimality verification should be carried out to guarantee that the optimized fiber and
hole orientation angles, ϕ and α, are the global optimal solutions. Taking the hexagonal hole
as an example, only one condition is analyzed when the ratio of the elastic modulus is given as
E2/E1 = 2.0. The external loads and other parameters are the same as in the previous examples.
The variation of the maximum tangential stress max |σθ| with respect to ϕ, α and the contour
map is illustrated in Fig. 14. The degree intervals of ϕ and α are all set as 0.01◦. It can be seen
from Fig. 14 that the value of max |σθ| differs for different ϕ and α. According to the calculation
results, max |σθ| reaches the minimum value of 47.30MPa only when ϕ = 55.53◦ and α = 54.60◦,
which verifies the results shown in Fig. 12.

4. Conclusions

To decrease the tangential stress concentration around an arbitrarily shaped hole in an orthotro-
pic plate, the optimization design on the fiber orientation angle and the hole orientation angle
are conducted. The tangential stress distributions around non-circular shapes are given. The
results show that the tangential stress concentration around a hole with corner points in an or-
thotropic plate under an inequi-biaxial loading is more likely to occur in/near the corner points.
Furthermore, the tangential stress concentration around a hole with corner points is found to
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Fig. 14. The three-dimensional map and contour map of max |σθ| for all possible placements of the fiber
and hole orientation angles

be more significant compared to that around a smooth convex hole. Under an inequi-biaxial
loading, compressive stress can usually be found and is mainly located at the sides that are
parallel or inclined to the direction of the minimum external loading.
Based on the results, the following several treatments can be referred in the designing of

orthotropic plates in order to decrease the tangential stress concentration: (1) avoid holes with
corner points and choose smooth convex holes instead, such as an ellipse hole; (2) set the major
axis of an ellipse in the direction of the maximum external loading and (3) set the principal
direction that has the larger Young’s modulus inclined to the direction of the minimum loading,
especially for a significantly orthotropic plate.
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